S@MR

ISSN 1813-3304

СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports http://semr.math.nsc.ru

Том 8, стр. 48–52 (2011) Краткие сообщения УДК 514.8, 515.12 MSC 28A80

SOME PROPERTIES OF SELF-SIMILAR CONVEX POLYTOPES

A. V. TETENOV, I. B. DAVYDKIN

ABSTRACT. We show that for each semigroup G of similarities defining the self-similarity structure on a convex self-similar polytope K there is an edge A of K such that the fixed points of homotheties $g \in G$ are dense in A.

Keywords: self-similar set, fractal, convex polytope, graph-directed IFS, homothety, semigroup.

The interplay between the concepts of self-similarity and convexity is a promising and still unexplored field in the theory of self-similar fractals.

The first attempt to study the convex hulls of self-similar sets was made in 1993 by P. Panzone [1] who found the sufficient conditions for the self-similar set in \mathbb{R}^n to have a finite polyhedral convex hull. In 1999, R. Strichartz and Y. Wang [2] obtained necessary and sufficient conditions for the finiteness of the convex hull for self-affine tiles in \mathbb{R}^n . The solution of this problems for self-affine multitiles was proposed in 2010 by I. Kirat and I. Kocyigit [3]. The use of the convex hulls and polyconvex prefractals was one of the main tools to investigate the curvature of selfsimilar and random self-similar sets in the recent works of S. Winter and M. Zahle [4, 5].

The simplest self-similar sets are line segments and convex polytopes. In the papers [6, 7] authors specified the conditions under which convex hull of a self-similar set in a Banach space is a finite polytope. However, the conditions for self-similar set to be itself a convex polytope in \mathbb{R}^n and properties of self-similar structures on convex sets have not yet been studied. In this note we investigate the properties of homotheties in the semigroup G(S) of similarities determining the self-similar structure on a finite polytope K.

Tetenov, A.V., Davydkin, I.B., Some properties of self-similar convex polytopes. © 2011 Tetenov, A.V., Davydkin, I.B.

The work is supported by RFFI (grants 09-01-90202, 09-01-98001 and 10-01-00642).

Communicated by A.D. Mednykh January, 25, 2011, published February, 14, 2011.

Notation.

1. Let $S = \{S_1...S_m\}$ be a system of contraction similarities of \mathbb{R}^n . A nonempty compact set $K \subset \mathbb{R}^n$ is called an *invariant set* or an *attractor* of the system S if $K = \bigcup_{i=1}^m S_i(K)$. For each $x \in K$ there is such $S_i \in S$, that $x \in S_i(K)$. The point $x_1 = S_i^{-1}(x)$ is called a *predecessor* of x. For each x there is a (possibly non-unique) sequence of predecessors x_1, x_2, \ldots and a sequence of indices i_1, i_2, \ldots such that for each $k, S_{k+1}(x_{k+1}) = x_k$. By G(S) we denote the semigroup generated by the system S.

2. Let $\Gamma = (V, E)$ be a directed multigraph with the set of vertices V and the set of edges E, each edge $e \in E$ having the initial vertex $\alpha(e) \in V$ and the final vertex $\omega(e) \in V$. The set of all edges $e \in E$, for which $\alpha(e) = u$ and $\omega(e) = v$ will be denoted by E_{uv} . Let $\{X_u, u \in V\}$ be a family of complete metric spaces and for each $e \in E_{uv}$, let $S_e : X_v \to X_u$ be a contraction similarity. Then the system $S_e, e \in E$ is called a graph directed system of similarities with a structural graph Γ . A family $\{K_u, u \in V\}$ of nonempty compact subsets $K_u \in X_u$ is called the attractor of the graph directed system S, if for all $u \in V$, $K_u = \bigcup_{v \in V} \bigcup_{e \in E_{uv}} S_e(K_v)$.

3. Each contraction similarity $S : \mathbb{R}^n \to \mathbb{R}^n$ is uniquely represented in the form $S(x) = q \cdot O(x - a) + a$, where a is the fixed point of S, q is the contraction ratio, and O is the orthogonal transformation of \mathbb{R}^n , which we call the *orthogonal part* of S. If O = Id, then S is called a *homothety*.

First we observe that if the invariant set K of a system S is a finite polytope, then there is an induced graph-directed system S' acting on the family of all k-faces of K:

Theorem 1. Let S be a system of contraction similarities in \mathbb{R}^n , whose invariant set K is a finite convex polytope. For each k = 0, 1, ..., n, there is a finite set of kfaces $A_j^{(k)}$ of K such that the set of fixed points of the similarities $g \in G(S)$ sending $A_j^{(k)}$ into itself is dense in $A_j^{(k)}$.

Proof. Denote the set of all k-faces of the polytope K by $F^{(k)}$. Let x be a point lying on k-face A_i of the polytope K. Then there is such k-face A' and a similarity $S' \in S$, that $x \in S'(A') \subset A_i$.

Indeed, if x' is a predecessor of x and $S' \in S$ satisfies S'(x') = x, then solid tangent cones $\mathcal{C}(x')$ and $\mathcal{C}(x)$ to K at points x' and x satisfy the inclusion $S'(\mathcal{C}(x')) \subset$ $\mathcal{C}(x)$. Since the cone $\mathcal{C}(x)$ does not contain any (k + 1)-plane in \mathbb{R}^n , the same is true for the cone $\mathcal{C}(x')$. Thus, x' belongs to some k-face A' of the polytope K and therefore A is contained in the union $\bigcup_{S_l \in S} \bigcup_{A_j \in F^{(k)}} S_l(A_j)$ of the images $S'_l(A_j)$ of

k-faces of K.

Since the union of all (k-1)-faces of the polytope K under similarities $S_i \in S$ is nowhere dense in A, the k-face A is a subset of the union $\bigcup S'_i(A_j)$, where S'_i are only those elements of S for which the the intersection of the interiors of kpolytopes $S'_i(A_j)$ and A is nonempty. If this intersection is nonempty, the inclusion $S'_i(A_j) \subset K$ implies that $S'_i(A_j) \subset A$.

Let A_i, A_j be k-faces of K. Denote by L(i, j) the set of all l = 1, ..., m, such that $S_l(A_j) \subset A_i$. Denote by S_{ijl} the restriction of S_l to the k-face A_j . Thus we

define for each k-face A_i of the polytope K a finite set of similarities $S_{ijl}, l \in L(i, j)$ satisfying the following conditions:

1. The mapping S_{ijl} is a restriction of some similarity $S_l \in S$ to the k-face A_i ;

2. for each $l \in L(i, j)$, $S_{ijl}(A_j) \subset A_i$; 3. $A_i = \bigcup_{A_j \in F^{(k)}} \bigcup_{l \in L(i,j)} S_{ijl}(A_j)$

Let $\Gamma' = (F^{(k)}, E')$ be a directed multigraph with the set of vertices $F^{(k)}$ and the set of edges $E' = \bigcup_{A_i, A_j \in F^{(k)}} E'_{ij}$, where E'_{ij} is the set of all triples $e = (i, j, l), l \in$

L(i, j). The conditions (1-3) mean that the system $S' = \{S_{ijl}, l \in L(i, j)\}$ is a graph directed system of similarities with a structural graph Γ' and its attractor is just the family of all k-faces A_i .

The directed multigraph Γ' contains at least one strongly connected component Γ_0 without outgoing edges having their final vertices in the complement of Γ_0 . Let $(F_0^{(k)}, E'_0)$ be the sets of vertices and edges of the subgraph Γ_0 , and S'_0 be the set of all similarities $S_e, e \in E'_0$. If $A_i \in F_0^{(k)}$ then for each $A_j \in F_0^{(k)}$ the set L(i, j) defines the edges of the subgraph Γ_0 going from A_i to A_j ; at he same time, if $A_j \notin F_0^{(k)}$, then the set L(i,j) is empty. Therefore we have the equality $A_i = \bigcup_{A_j \in F_0^{(k)}} \bigcup_{l \in L(i,j)} S_{ijl}(A_j)$, which shows that for the graph-directed system S'_0 its

attractor is the family of all k-faces $A_j \in F_0^{(k)}$. The set G_{A_j} of all those elements of the semigroup $G(\mathfrak{S})$, which map a k-face $A_j \in F_0^{(k)}$ to itself, is a semigroup itself. As it was shown in [8], since the graph Γ_0 is strongly connected, the set of the fixed points z_g of the similarities $g \in G_{A_j}$ is dense in A_i .

In dimension k = 1 and k = 2 it follows that some powers of the elements of semigroups G_{A_i} are homotheties:

Corollary 2. There is a vertex z_0 of the polytope K, which is a fixed point of some homothety $g \in G(S)$.

Proof. By the Theorem 1, there is a vertex z_0 of the polytope K, which is a fixed point of some similarity $g \in G(S)$. Let $g(x) = q \cdot O(x - z_0) + z_0$, where $q = \operatorname{Lip}(g)$ and \mathcal{O} is the orthogonal part of g. The orthogonal transformation \mathcal{O} maps the solid tangent cone $\mathcal{C}(z_0)$ to itself. The cone $\mathcal{C}(z_0)$ is a salient polyhedral convex cone. Therefore it is bounded by a finite number of support hyperplanes, and normal vectors to these hyperplanes contain a basis for \mathbb{R}^n . The action of \mathcal{O} induces a permutation of these normal vectors. Then some power \mathcal{O}^p fixes these normal vectors and therefore is equal to identity. Then g^p is a homothety. \square

Corollary 3. There is an edge A_j of the polytope K such that the set of fixed points of homotheties $g \in G(S)$ sending A_j into itself is dense in A_j .

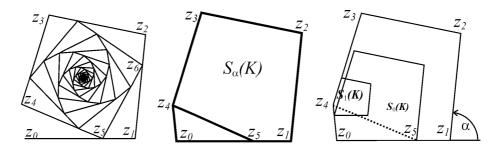
Proof. By the Theorem 1, there is an edge $A_j \in F^{(1)}$, for which the set of the fixed points z_g of the similarities $g \in G_{A_j}$ is dense in A_j . Consider such a similarity g and let O be it's orthogonal part. Let M be the hyperplane containing the point z_q and orthogonal to A_j and let $\mathcal{C}(z_q)$ be the solid tangent cone to K at the point z_q . Since O(M) = M and $O(\mathcal{C}(z_g)) = \mathcal{C}(z_g), O(\mathcal{C}(z_g) \cap M) = \mathcal{C}(z_g) \cap M$. Since

50

 $\mathcal{C}(z_g) \cap M$ is a salient polyhedral convex cone in M, the argument of Corollary 2 shows that for some p, $\mathcal{O}^p|_M = \text{Id}$. Then g^{2p} is a homothety. \Box

Corollary 4. For each k = 1, ..., n - 1 there is a k-face A_j of the polytope K, such that the set of fixed points z_g of those similarities $g \in G(S)$ sending A_j into itself, whose restriction to the orthogonal (n - k)-plane to A - j at the point z_g is a homothety, is dense in A_j .

Example 5. The following example shows that for a system S of similarities of \mathbb{R}^2 , whose invariant set K is a convex polygon, the set of all fixed points z_g of homotheties $g \in G(S)$ may be contained in one of its sides.



Take such angle $\alpha \in (2\pi/5, \pi/2)$ that α/π is irrational. For 0 < q < 1 define a similarity S_{α} in \mathbb{C} by the formula $S_{\alpha}(z) = 1 + qe^{i\alpha}z$. Put $z_0 = 0, z_1 = 1, z_{k+1} = S_{\alpha}(z_k)$. Find such value of q, that $\operatorname{Im}(z_5) = 0$. Let K be a pentagon with vertices z_0, z_1, z_2, z_3, z_4 . Define also the similarities $S_0(z) = z_5 z$ and $S_1(z) = (1-z_5)z+z_5 z_4$. Then $K = S_0(K) \cup S_1(K) \cup S_{\alpha}(K)$. Therefore, the polygon K is the invariant set of the system $S = \{S_0, S_1, S_{\alpha}\}$. Consider the subsemigroup G' of the semigroup G(S), generated by the transformations S_0 and S_1 . All the elements $g \in G'$ are homotheties, and their fixed points form a dense subset of the line segment $[z_0, z_4]$. For each of the similarities $g \in G \setminus G'$ it's orthogonal part is a rotation to some positive integral multiple of the angle α . Therefore there are no any homothety in G whose fixed point is not contained in $[z_0, z_4]$.

References

- Panzone P. A. A note on the convex hulls of self-similar sets // Actas del 2 congreso " Dr. A.A. Monteiro" Inst. de Matematica de Bahia Blanca. 1993. P. 57–64.
- Strichartz R., Wang Y. Geometry of self-affine tiles I // Indiana Univ. Math. J. 1999. V. 48. P. 1–24.
- Kirat I., Kocyigit I. Remarcs on self-affine fractals with polytope convex hulls // Fractals. 2010. V. 18, N 4. P. 483–498.
- [4] Winter S. Curvature measures and fractals // Diss. Math. 453, (2008). 66 pp.
- [5] Zahle M. Curvature densities of self-similar sets // Workshop on Fractals and Tilings 2009 July 6 - 10, Strobl, Austria.
- [6] Tetenov A. V., Davydkin I. B. Hausdorff dimension of the set of extreme points of a selfsimilar set // www.arXiv.org/math.MG/0202215.
- [7] Тетенов А. В., Давыдкин И. Б. О выпуклых оболочках самоподобных множеств // Вестник Новосибирского государственного университета. Серия «Математика, механика, информатика». 2005. Т. V. Вып. 2. С. 21–27.
- [8] Tetenov A. V. Self-similar Jordan arcs and graph directed systems of similarities // Siberian Math. Journal. 2006. V. 47, N. 5., P. 940–949.

Andrey V. Tetenov, Gorno-Altaisk state university, Lenkin str.,1, 649000, Gorno-Altaisk, Russia *E-mail address:* atet@mail.ru

Ivan B. Davydkin, Gorno-Altaisk state university, Lenkin str.,1, 649000, Gorno-Altaisk, Russia *E-mail address:* divan@gasu.ru

52